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FOREWORD

This report was prepared by Michael D'Innocenzio of the
Research Division, Curtiss—Wright Corporation, in partial ful-
fillment of Contract No. AF33(616)-3140, under WADC Project
No. 7211, "Acoustic Energy Sources,™ Task No. 30212, "Reduction
of Turbine Engine Nolse Levels at the Source." This work was
administered under the directlon of the Powerplant Laboratory,
WCLPR, Wright Air Development Center, with Mr. G. E. Terpenny
acting as project engineer.

This document is the first prepared under Contract No.
AF33(516)-3140. Further research is being conducted on
"Reduction of Turbine Engine Noise Levels at the Source" and
will be published in future parts of this report.

The assistance of Mr. A. D. Schnyer of the Research
Division In the preparation of this report is gratefully
acknowledged.

, Grateful acknowledgment is made to the Institute of the
Aeronautical Sclences and the Aeronauticel Engineering Review.
for permission to reproduce data from IAS reprints, Nos. 515

and 54l .
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ABSTRACT

Aerodynamlic noise generation has been the subject of
extensive investigations both in this country and abroad.
A survey of this available theoretical and experlmental data
on aerodynamic nolse generatlion has been made to aid in
establishing the present "state of the art" in the field of
turbo Jet englne nolse generation and control.

Methods of analyzing and predicting noise levels are
presented and evaluated. - The efforts of several investigators

in the development of Jet nolse suppression devices are re-
viewed. :

PUBLICATION REVIEW

The publication of this report does not constitute approval by the Air
Force of the findings or the conclusions contained herein, It is published
only for the exchange and stimmlation of ideas.

FOR THE COMMANDER :

G

NORMAN C. APPOLD

Colonel, USAF

Chief, Power Plant Laboratory
Directorate of Development
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L. INTRODUCTION

A great deal of effort has been expended in attempts to
control the noise generated by jet-powered aircraft to protect
ailrcraft maintenance crews esnd nearby inhabitants from hearing
damage and annoyance. In addition to personnel hazard and
neighborhood complaints, there are records of structural fell-
ure of alrcraft components due to the energles and frequencies
propagated by jet nolse. Unfortunately, the existing problem
will be further aggravated by current and proposed supersonle
aircraft requiring increased mass flow and higher thrust pro-
pulsion systems. 'This demand for higher design speeds and
thrusts may possibly double present sound levels, thereby adding
considerably to the problem of nolse sbatement.

Contractors involved 1n the development of high performance
jet alrcraft should possess an adequate understanding of the
mechanlisms by which aerodynamic nolse is generated and propa-
gated. With this insight, it might be possible for the designer
to predict the nolse levels of proposed powerplants during the
initlal stages of design and, 1f necessary, to teke sasppropriate
steps to reduce the nolses generated to a tolerable value.

The basic theory of the origin, propagation, and reception
of sound was proposed 1nitlally by the ancient Greeks, but the
efforts of eminent Investigators such as Rayleigh, Helmholtz,
Toepler, Mach and Sabine ralsed the initial hypotheses to the
level of a sclence by rigorous correlation of theories and
experimental data. However, 1in the development of the sclence
of acoustics, & small phase, aerodynamlic Jet noise generation
received little or no attention by these 1lnvestigators. Not
until recent years, through the work of Lighthill in England (1%,
were some concepts by which Jet nolse 1s generated actually
developed. Previous to this time, the mechanisms involved in
the generatlon of noise from jet streams were not known; as a
result, investlgators lacked the tools to predict the intensity
of the jet nolse from the available fluld flow perameters.

In Great Briltain and the United States, experimental
programs have been or are being conducted at leading univer-
sitlies and government facllities to study the problems of jet
noise. Considerable progress has been made. In fact, 1t may
be said at this time that the basic phenomena of aerodvnamic jet
noise are now understood. A theory and a method have been devel-
oped which permits the prediction of Jet noise levels and personnel
reactlon to predetermined noise levels.

The following paper 1s a review and evaluation of tech-
nical efforts to date in the fleld of aerodynamic noise generation
and control, An attempt 1s made to understand the problem of
aerodynamic nolse in terms of the physiological and psychological
effects on the human being since at the moment, the basic problem
stems from the necessity of protecting the human being from the
enormous acoustical energies radiated by Jjet-powered aircraft.

#Refer tao Bibliography -1-
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II. CHARACTERISTICS AND EFFECTS OF NOISE

The ear has the inherent abllity to resolve the phenom-
enon of sound (see Appendix A) into its various frequency com-
ponents and to judge 1ts loudness and pitch. The reception
of sound by the ear cen be expressed in terms of certain
physical properties, one of these being the pressure of the
transmitting medium. Pressure verlations in the medium from
an initial or equilibrium value which arise as a result of
sound propagation are usually referred tc as sound pressure or
"excess" pressure. Since the range of sound pressures audlble
to the human ear can cover a wide rsnge, it has become common
practice to express sound pressure (as well as other acoustical
properties) as a logarithmic relation for the sake of conven-
ience. ‘Thus the SOUND PRESSURE' LEVEL 1s defined as:

SPL = 20 log,, (RMS value of sound pressure)
(Reference sound pressure) (1)

The units of SPL are decibels, (db). Several reference
pressures have been used by workers in the fleld; however, the
most common value, which has been arbitrarily selected, 1s
0.0002 yneﬂ/cmzﬁ This value corresponds to a sound 1lntensity
of 1071 watts/cma, for standard air, which is the minimum
audible intensity of a 1000 ecycles per second, (cps), tone for
the average ear. SOUND INTENSITY can be considered as the time
rate of transfer of the generated sound energy per unit area
perpendigular to a specified direction. It has the units of

watts/cm Expressed in logarithmic form 1t is known as
INTENSITY LEVEL:

IL = 10 logyp (intensity of sound)
(reference intensity) (II)

The reference intensity 1s usually taken to be 10'16 watts/cm2
since it corresponds to a plane or gpherical sound wave having

a sound pressure of 0.0002 dynes/cm“. The unit of intensity
level 1s the decibel, (db).

The range of audlbility of the ear is shown by Figure 1.
The pressure varlation required at each frequency to just
arouse a sensation of hesring is 1ndicated by the curve labeled
"threshold of hearing." While the normal range of hearing, 1i.e.,
the audible range, extends from about 20 cps to 20,000 cps, the
sound pressure required to arouse a sensation of sound is not
the same at all frequencies. Data from numerous subjective
tests show that sounds having pressure levels of 120 db and 140
db produce a feellng of discomfort and paln, respectively. If
the sound pressure level 1s greater than 160 db, permanent dam-
age can occur to the mechanism of the middle ear. Exposure to
an intense nolse for a short period of time rsises our thres-
hold of hearing which means that for a given tone to be audible,
its intensity must be increased. In such situations, traumatic
deafness (temporary deafness)can ocaur. Figure 2 illustrates
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the loss in hearing which resulted from the exposure to a Jet
engine noise field. Repeated exposure to noilse levels which
cause traumatic deafness have resulted in cases of permanent
deafrress (2, 3, h)o Personnel should not be exposed %o intense
sound levels of 140 db or greater unless protective gear is
worn in addition to the standard ear plugs.

Data has been obtained which indicates other deleterious
effects of sound. At SPL of 140 db and greater, within the
frequency range of 700 to 2,000 cps, the head perceives a
strong sensation of skull vibration while the chest wall,
abdominal wall, arm and leg muscles are also set in vibration
at these conditions. It has also been found that at these
high pressure levels, there 1s a mild heating of exposed body
surfaces for frequencies between 3,000 and 25,000 cps. Strong
sound fleld exposurs can sometimes cause conditions such as
vomiting, nausea; headaches, and hyper-irritability. Airborne
ultrasonic weves, 1t appears; do not damage the central nervous
system and sense organs unless the head structure 1s placed in
physical contact with the generating sound source (5). Since
jet engine noise is predominantly audible sound; the ultrasonic
portion of the sound spectrum does not enter into the problem
of jet engine noise at this time.

The ear, though quite sensitive to pressure, has limited
frequency response - responding to some frequencies better
than others. Thus, two sounds of equal intensities but at
different frequencles may sound of different loudness. The
Fletcher-Munson curve of Figure 3 indicates the levels of tones
which sound equally loud; 1l.e., those tones which have the same
loudness level. LOUDNESS LEVEL is defined as the sound pres-
sure of a 1,000 cps tone which sounds, to the human ear, as loud
as the sound in question. It has the unit of phons. However,
the loudness level concept does not indicate how much louder
one sound is than another. In order to indicate this, we resort
to the concept of loudness. LOUDNESS 1s defined as the relative
positioning of a sound on a scale in the order of "soft" to
"loud" as determined by the ear. The scale 1s set up so that
sounds are compared in loudness to a sound having a frequency
of 1,000 cps at a sound pressure level of LO db. The units of
loudness are called sones. The transfer function curve, Figure i,
is used for determining the relative loudness of sounds. As an
example of the use of these curves, suppose that a source emits
a 500 cps sound having a SPL = 100 db at a given position in the
sound field (note that for SPL > 90 db and frequencies < 1500
cps, the loudness level curves are almost independent of fre-
quency). Suppose now that the intensity of this sound is reduced
so that the SPL = 91 db. Figure 3 indicates that for the sound
having & SPL = 100 db, the loudness level = 100 phons, while for
a SPL = 91 db, the loudness level = 91 phons. Using the trans-
fer function, these correspond to loudness units of 100 sones
and 50 sones, respectively. Thus, it is noted that the loudness
has been reduced by fifty percent for a nine percent reduction
in db.
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Sound, like other wave phenomena, is primarily a transfer

of energy. The power of a source can be expressed in a logarithmic

manner; therefore, the SOUND POWER LEVEL 1is defined as: .

PWL = 10 logyqg (ecoustic power ) (I1I)
reference acoustlc power) :

The reference acoustic power is usually taken as 10-13
watts; the unit of sound power level 1s the decibel. 1In
Appendix B, a method is presented whereby sound power level
can be determined for a nolse source. Typical values of
acoustic power generated by several familiar nolse sources
are shown by Figure 5, while the noise levels of various
alreraft propulsive syastems are indicated by Figure 6. The
acoustic pressures assocliated with aircraft propulsion systems
lie in the decibel range where pain or damage to the ear can
occur. Por the same thrust; the turbojet engine and the rocket
generate the greatest amount of nolse compared to other types
of powerplants. This 1s due mainly to the Jjet nozzle - a
tremendous noise generator which these systems employ. The
data of Figure 7 indicate jet-powered alrcraft produce louder
noises than other type aircraft during take-off operation,
whereas during the landing approach, jet alrcraft nolse is
somewhat less than other aircraft for the same time interval (6).
Comparison of these data on the basis of equal alrcraft welght
(since engine noise and power can be said to be proportional
to aircraft gross weight) shows that jet-powered alr‘raft
produce approximately 9 db more noise during take-off than
alrcraft propelled by reciprocating engines.

i
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Proposed Jet Engines
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Turbojet Engine with Afterburner
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IIT. AERODYNAMIC NOISE GENERATION AND CONTROL

1. Turbojet Engine Noise Sources

In developing turbojet engines to meet the steadlly
increasing demands for higher propulsive forces, the engine
designer has been introducing additional problems with regards
to the nolse generation characteristics of the engine. The
nolse levels have reached values where protective measures
must be taken to prevent loss of hearing and other physical
damage to personnel in the vicinity of jet engine operation.

The noise developed by turbojet engines 1s generated
primarily by aerodynamic means and is usually referred to as
AERODYNAMIC NOISE. Aerodynamic nolse differs from other types.
of noise in thaet 1t 1s not generated by the movement of a rigid
surface but rather by the action of an unsteady flow of fluid.
Examples of aerodynamic nolse generators are vortices, boundary
layers, wakes, and jet streams.

While investigators (7, 8, 9) have found that the exhaust
Jet streams are the predominant noise source of turbojet engines,
a portion of the total nolse generated can be attributed to
such secondary sources as the inlet; compressor, turbine, and
combustion chamber. Unfortunately, there are little noise data
avalleble to bear out the relative roles of these secondary
sources.

The characteristic whine of the compressor 1s a result of
the siren-like effect created as ailr flows past the compressor
blades. At low engine power settings, the compressor noise
becomes predominant and is evident as a peak in the high frequency
band of the engine noise spectrum (see Figure 26a). This noise
is radiated forward of the engine and consists primarily of
frequencies above 2000 cps. Above about 85 percent maximum rpm,
noises generated by the compressor become masked by the intense
noise generated by the jet exhaust. Compressor nolse has been
difficult to correlate since it appears to be a function of
several factors such as horsepower, shaft speed, number of blades,
number of stages; and flow capacity. The peak spectrum, which
is characteristic of compressor nolse, appears to be a function
of the relative speed of the rotor and of the number of blades,
while the intensity of the generated noise appears to be a
function primarily of the horsepower delivered to the compressor;
in fact, the limited available data indicates that a doubling
of horsepower produces approximately a 6 db increase in the total
acoustical power generated by the compressor. Prediction of
Jet engine compressor noise has been based upon theory and
design procedures used in estimating propeller noise because of
the accustic similarity between these two sources (7).
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Nolse generated in the combustion chamber is beliieved
to be the result of unstable burning of the gases and of vi-
bration of the combustlon chamber walls. Full-scale engine
tests indicate that rough burning increases the nolse level
considerably (10). Noise data also seems to indicate that
statlonary waves are generated in annular type combustion
chamber passages; these waves generate tne characteristic

high Intensity, low frequency noises assoclated with annular
combustors.

Although these secondary sources do not contribute much
towards the total noise levels of present-day turbojet engines,
it is concelvable that with the advent of larger powerplants,
with transonic or supersonic compressors, and with the devel-
opment of more effective jet nolse reduction devices, these
secondary sources may become of primary concern. .Also, present
ground run-up operations to check out equipment and engine con-

trols are usually performed at the low rpm settings where comn~
pressor noise is predominant,

To -date, the major efforts in the fleld of aerodynamic
nolse generation and control can be assoclated with jet noise
studies. The problem of Jjet nolse generation and propagation
In turbojet engines has recelved extensive theoretical and
experimental consideration; this could be attributed perhaps to
a jet nozzle's more obvious role as a nolse generator compared
to the other nolse generating components of a turbo jet encine.
In concentrating their efforts on jet nolse, investigators hsve
been able to assemble sufficient nolse data to bear out the

ma jor role of Jjet nozzles In the field of serodynamic noise
generation.
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2. Exhaust Jet Noise - Suberitical Flow
Lighthill's Theory

Exhaust nozzles,; developed primarily for efficient con-
verslon of pressure energy to kinetlc energy so as to produce
maximum jet engine thrust, have become the subject of intensive
studles because of thelr supvlemental role as nolse generators.
Recent experimental efforts by several investigators, both in
this country and abroad (11, 12, 13, 1L, 15, 16) have established
that the aerodynamic phenomenon, jet nolse, 1s primarily a
result of turbulent mixing of the jet stream with the surrounding
atmogphere. It ls of interest that experimental data has cor-
related (within the limits of experimentation) with a theory
developed by Lighthill for subsonic flow. Previous to Lighthill's
analytlcal examination of the mechanism of aerodynamic jet nolse
generation, scientists in the field of acoustics had the ability
to observe only the effects of jet nolse. Lighthill's work made
it possible for investigators to understand jet noise phenomena.

By employing the concept of an "acoustic quadropole" as

the elementary sound generator, Lighthill was able to show
mathematically that the totdl acoustical power, radlated by

a Jjet discharging into quiescient air, varies directly as the
elghth power of Jjet exit veloclty and the second power of the
jet exit diameter. Recently, investigators (8, 9, 17, 18) have
been able to confirm thils experimentally for both scale-model
Jjets and full-scale turbojet engines (Figures 8, 9, 10, 11).
Lighthill's initiel analysis (1-I1) presented a tensor expression
which related the noise intensity to the shearing stresses of
the fluld. The aneslysis assumed a cold flow at subsonic condil-
tions and a filxed distribution for the acoustic quadropole
sources. The quadropoles represent the molecules of the fluild.
The radiation pattern of Lighthill's scoustic quadropole was
directional, having a four-lobed clover leaf pattern with maxlimas
at an angle of L5° to the jet axis. Unlike simple sound sources,
Jet nolse is highly directional and similar to that predicted by
the quadropole concept. Of the three theoretical sources of aero-
dynamic nolse, monopole, dipole, and quadropole, the latter is
the only one which is applicable to jet noise theory since its
sound generation 13 produced by the action of shear and moments
upon the fluild system. Where a fluid is emitted periodiecally

as in a pulse Jjet, the theoretical approach to noilse generation
1s based upon a monopole source. Propeller nolse theory has
been successafully based upon the dipole source as the nolse
generator since thls source represents a periodic force in a
free fluid - the séme physical action which occurs on propeller
blades. Of the three sources, the quadropole source 1is the least
efficient acoustic generator, converting only 1/1,000 as much of

i1ts kinetlc energy to sound energy compared to a monopole source.
Eighthill's theory showed that the
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efficiency of this conversion is proportional to the fifth power
of Mach number with only minor dependence upon Reynolds' number.
Experimental data (19) shows that the proportionality constant
for this conversion is approximately 104 for subsonic flow,
Thus, the above relations can be expressed as follows:

N =107k MS_% |

) o 8§ {2 (IV)
and Total Acoustic Energyocc Lo V° d
' c, (V)
whereN = efficlency of converting kinetlc energy to acoustical

energy

jet Mach number

jet density

density of surroundings

veloclty of sound in surroundings

jet velocity |
jet diameter o
Thus, for a cold jet having an exit Mach number of 2.0, the |
energy conversion is approximately 0.3 percent, while for lower i
exit Mach numbers, i.e., 1.0, the conversion is reduced to
approximately 0.0l percent. Figure 12 shows typlcal values

of kinetic energy assoclated with various propulslion systems.

<o =
5 £0
W aunun

However, Lighthill's theory of jet nolise generation is

not yet complete despite correlation of experimental data *
(Figures 8, 9, 10, 11) with his @ AV8 expression. A second
005

paper by Lighthill (1-II) raised the question of the validity
of his initial assumption of a fixed distributlion of acoustic
gquadropoles, If there is a quadropole convectlon effect, 1.e.,
a moving distribution of quadropoles, the total acoustical
power generated by a Jet should be proportional to a higher
exponent of jet velocity than the eighth power.

The Nolse Fields

The acousticsal energy radlated by an aerodynamic source,
such as a Jet nozzle, spreads as 1t propagates in the surround-
ing atmosphere in a quasi-axially symmetric manner. The nolse
from the jet is a result of turbulent mixing in the wake which ;
begins close to the jet exit. This mixing reglon progresses f
downstream, spreading throughout the flow. Several dlameters
downstream from the jet exit, the turbulent mixing region com- !
pletely penetrates the core of the jet, and it 1s found that the i
sound energy propagates in & manner similar to that for light,
viz., according to the inverse square law. (The acoustical .
power per unit area decreases as the square of the distance from |
the noise source.) This reglon is known as the "far field." !
References in the field of acoustics state that for a plane or
spherical sound wave emanating from a uniformly generating g
source, sound intensity can be expressed as: t
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I=p2 = W
0Co . (VI)

where W = sound power
p = sound pressure
A = area through which sound is transmitted

Substituting this relation in the equation for sound power
level, PWL = 10 loglo W , the following expression can be
obtained' W,

) Po (VII)
Although the noise generated by a Jet is not uniformly
symmetric, the above relations are still applicable; acoustic
power is then approximately proportional to the square of the
sound pressure. From the inverse square law, the following
relation can also be obgained:

wk/ P
!ﬁIstanceSZ’“ (VIII)

P 1
~ (DIstance)

Utilizing the sound pressure level expression (I) and the

above relation
ASPLQ: 20 logyp (Distance +/\Distance)
(Distance) (IX)
Thus, 1f the distance from the nolse source 1is doubled, =
6 db reduction of sound pressure level should occur in the
far field for choked or unchoked jets. Figure 13 shows actual
measurements taken in a far fileld.

PWL = 10 logyg IA_ = 10 logiofp \P
10 ¥ &

or

Between the nozzle exit and the far field region lies

the "near field" in which the sound distribution 1s noticeably
different from the case of the far field. In this region, jet
noise is propagated in a manner which does not follow the inverse
square law but some complex relation which is still the subject of
investigations. While neighborhood complaints to jet engine noise
are a result of far field noise levels, the pernicious effects of
jet nolse are evidenced in the near field where the pilot, passen-
gers, and service crews are located, and therefore it 1s essential
to intensify research efforts in thls area.

The presence of thermal currents, winds, and obstacles
(1.e., terrain, structures, etc.) affect the propagation of
jet noise in the distant far field. Thermal currents cause
sound waves to bend so that they follow a curved patg, bending
in the direction away from the higher temperature strata and
towards the lower temperature strata. The result of these
sound diffractions is the formation of "shadow zones" through
which very little sound propagates. Moreover, some of the
sound energy 1s absorbed by the atmosphere during propagation,
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particularly the high frequency portion of the sound spectrum
(see Figure 1l4). Absorption, reflection, and scattering of
directed sound occur when sound waves strike obstacles. These
factors influence the response of a community to jet engine
noise.

Noise due to turbulent mixing of & subsonic jet is charac-
terized by its having no discrete frequencies and having some
randomness of sound pressure amplitude. The spectrum extends
over many octaves in frequency and has a broad maximum as evi-
denced from Figure 15. Propeller noise which is found to be
most iIntense near the plane of rotation has the characteristic
that the maximum sound pressure level 1s located in the plane
of propeller rotation, especially for high tip speed propellers.
Jet noise, however, has a maximum sound pressure level to the
rear of the engine and positioned alaong a 30° azimuth from the
jet axis. For unchoked operation of turbojet engines, frequen-
cies of about 200 to 1500 cps occur near the jet axis. At about
two diameters downstream from the jet nozzle exit, the predomlnant
frequencies range less than 200 cps. While the frequency con-
tent of the turbojet engine can extend to about 10,000 cps (withip
the audible range), the higher frequencies contain little acoustir
cal energy.

Model and Full-Scale Jet Nolse Datsa

Subsonic experimental data indicate that the nolse gene-
rated by full-scale turbojet engines 1is governed by the same
laws as the simple alr jet, and implies, therefore, that turbu-
lent mixing of the jet with the atmosphere is the major source
of Jet engine noise. For the same jet velocity, both model and
full-scale engine jet nozzles produce approximately the same
sound pressure level at similar values of (distance from jet
exit/jet dismeter). This relationship is shown in Figure 16.
These tests also indicate that, sound pressure appears to vary
directly as the ( jet velocity)u in the far field region, thereby
agreeing with Lighthill's expression for jet noise. Both model
and full-scale jet engine tests illustrate and corroborate
Lighthlll's theoretical conclusions that jet noise is also
proportional to the square of the jet diameter. The tests in-
dicate that decreasing the nozzle diameter reduces the total
acoustical power generated by the jet, but also causes the
noise spectrum to shift towards the higher frequency hands.
(See Figure 17.) Several investigators have attempted to es-
timate this shift in the peak value of the noise spectrum by
the use of a dimensionless parameter, the Strouhal Number,
where:

Strouhal Number = (peak freauencx)(Jet diameter) (x)
et velocity

From numerous measurements of full-scale turbojet noise data,
it has been found that Strouhal Numbers0.13(20). Thus, if
Jet diemeter and velocity are known, it 1s possible to predict
the frequency peak in the spectrum for full-scale engines, by
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use of the sbove value for Strouhal Number. The existence of
a relationship between Strouhal Number and Reynolds' Number
could help to establish a method of predicting the position of 4
the peak in the full-scale engine nolse spectrum from model test ‘
data. This subject requirss further study.

Although disagreement exists among a few Investigators
concerning the relationshlp between acoustic power generation
and fluid flow parameters, a preponderance of test data appears
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to substantiate use of Lighthill's eighth power velocity rela-

tionship. One of the significant facts obtained from{these
research investigations has been that turbo jet engine noise

data, at rated power, falls on the same curve as model jet data
even though the gas temperature differs between the two tests

by as much as 1,000°F. Evidence of this fact 1s shown in Figures

10 and 11. The effect of. increasing temperature upon sound power
level while maintaining a constant jet pressure ratio is 1llustra-
ted by Figure 15. Jet velocity increases as a result of increas-
ing zas temperature, consequently, the total generated acoustic
power increases. Note that as the jet velocity increases, the
maximum sound power level and its frequency increase, also.
Similar test data are shown in Figures 18, 19, and 20. The data
indicate that two identically sized jets, operating under dif-
ferent pressure ratios and temperatures but having the same jet
exit velocitles, will generate nearly the same acoustical power.
It appears, therefore, that Jet velocity 1s the most important
parameter contributlng towards the generation of jet noilse.

Perussal of avallable noise data reveals a lack of infar-
mation concerning the effect of the cone half-angle of thé noz-
zle on the generated noise. A report written by Tyler and
Perry (21) states that the power spectrum is independent of
the angle of convergence, while their data (Figure 21) indi-
cate a difference of approximately 3 db between a convergent
nozzle of 15° wall angle and a flat plate orifice (90° conver-
gence angle) having the same physical throat size. Since for
the same physical throat size a flat plate orifice has a lower
discharge coefficient, the actual jet area for a particular
pressure ratio would be less than that of g4 nozzle with a
smaller convergence angle. Therefore, the generated acoustic
vower for a flat plate orifice should be less than that for
nozzles with smaller cone half-angles. This trend 1s indicated
to some extent by the above data although the 3 db reduction is
probably in the range of test accuracy. Also power level re-
ductions on this order are insignificant; 10 to 20 db reductions
are required to relieve excessive nolse leyels at the present time.

Examination of madel and full-scale engine test data (un-~
choked flow conditions) reveals that each frequency band of
the generated nolse spectrum has a different propagation direc-
tion; in general, the lower frequency bands are located down-
stream near the axis of the jet, whlle the higher frequency
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bands are located at larger angles to the Jet axis and appear

to emanate from a region close to the jet nozzle exit (Figures
19 and 22). The intensity of these bapnds varies with azimuth
angle and velocity. The angle of maximum intensity increases
with jet velocity as evidenced by those data (Figures 19 and 20).
It 1s believed that the angle of maximum sound radiation 1is
greater at high velocities because increasing the jet velocity
ralises the frequency of the maximum component of the noise spectrum.
Since higher frequencies are located away from the ?et axig, the
angle of maximum intensity becomes larger. Powell (22) believes
that the higher frequency sounds are generated, particularly in
the annular shear layer of the Jet, by lateral quadropoles and
that the lower frequencies are generated by omnidirectional
sources farther downstream.

Noise data of turbojet engines operating under after-

. burning conditions indicate that higher noise levels are
generated primarily because of the higher jet velocities,
increased temperatures; and larger jet nozzle areas involved.
Test data gives evidence of the existence of strong resonance
conditions at high fuel-air ratios and high jet velocities.

, Under these circumstances, the resonant frequencies sometimes

1 contribute nearly 50 percent of the total noise energy and
have been known to cause structural failure of flameholders
(10 and 23). Experimental tests on a fighter aircraft operat-
ing with an afterburner (Figures 23 and 24) indicated that
maximum sound pressure levels occur at approximately L5C from
the jet axis, slightly greater than for non-afterburning turbo-
Jet engines.

The above discussion applies to the far field where the
generated nolse appears to obey the inverse square law and
Lighthill's theoretical relationship. In the near fileld,
these relations do not appear to apply and no clear relation-
ship is available at the present time to explain or to relate
physical measurements in this nolse field.

As in the far fleld region, jet velocity manifests itself
as the nmost important parameter in governing the sound pressure
in the near field. While the sound pressure in the far field
is proportional to the (jet velocity)4, model test data taken
in the near field at the nozzle exit and in a plane perpendicu-

, lar to the model jet axis, indicate that the sound pressure 1s

j a function of jet velocity to an exponent which varies from 2

to L depending upon the radial distance from the jet (Figure

25). Noise data taken in the near field close to the jet bound-
ary of a turbojet engine (Figure 26) indicated that at distances
greater than 15 diameters most of the sound pressure consisted

of frequencies of less than 150 cps. The maximum pressure fluc-
tuation occurred between 12 and 15 diameters, while closer to the
Jet nozzle exit, at about 3 diameters, the pressure fluctuations
wore mostly in the 2,000 cps frequency range.

The near field noise of a jet engine exhaust has been known
to cause fatigue fallures of airplane wing or fuselage skin
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panels, depending upon the engine's location. An investi-
gation has been conducted by N.A.C.A. to study the effect of
panel location on panel surface pressures and sound distri-
bution in the near field (24). Results of these investigations
for panels placed parallel to the Jet axlis and parallel to the
jet boundary, are shown in Figures 28 and 29. Note that the
pressure fluctuations on panels placed parallel to the jet
boundary increase by as much as 50 to 80 percent over values
obtained in a far field. This pressure doubling effect has
been observed on full-scale jet transports. (See Figure 27)

A study has been performsd (25) which states that it is
possible to predict the stresses in alrcraft skin panels

caused by the excltatlion of Jet nolse by a generalized

harmonic analysis. . :

160
140

120 ,s==r”’—\ ,
100

Jet Thrust/Engine
Jet Exit Diameter
Altitude

Jet Velocity

SPL (db)

2770 1b (Static)
1.27 ft.

Sea Level
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Distribution of SPL Along Fuselage of Transport
Using Four Jet Engines

Figure 27
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Prediction of Acoustical Power - Subaonic Exhaust Jets

Reseasrchers have been able to correlate with some success,
model jet and full-scale Jet engine noise characteristics. As
a result, model jet studies have become valuable tools in
determining jet noise characteristics. In conjunction with the
experimental studies, several lnvestigators have developed
expressions to predict acoustic power of subsonic jets.

Tyler and Perry (26) have suggested that the exponent for jet
velocity be six as opposed tg the eighth power which appears

in Lighthill's relation, vBa<c, Specific thrust (jet thrust/
weight flow) is suggested as a means of determining the acoustie
power of a turbojet engine. For subsonic conditions, specifie
thrust 1s essentially the effective jet velocity; its magnitude
can be obtained directly from full-scale engine tests.

Acoustic Power oC (Specific Thrust)6(Area)

Noise data obtained from numerous engine tests indicate that
the relation can be expressed as:

PWL = 60 log;, (Specific Thrust)+10 log,y(Nozzle Area)+43 (XI)

where reference power = 0,9 x 10713 watts
specific thrust = lb-sec/lb
nozzle area = in2

Mercer and Dyer (27) have related acoustic power to fluid
characteristics of the jet by dimensional analysis. The empiri-
cal relation for acoustic power 1s then:

Acoustic Power oC (Jet Power)(K2)

where K = (Jet power) 1.
tstatIc temperature) Staramstery

(x11)
From numerous full-scale engine tests, a proportionality
constant has been established so that the above relation can
be expressed as:
Acoustlic Power = (4.2)(1073)(Jet Power) (K2) (XIII)

where Jet power = % QAVZ, expressed in watts
static temperature - “R
Jet dlameter - inches -
acoustic power - watts

Based on these relationships, Mercer and Dyer developed a
monogram (Figure 30) which can be used to estimate the acoustic
power 05 a turbojet engine. Comparison of this method with
the V342 and apecifig thrust relations by Mercer and Dyer (27)
indicates that the K€ relation shows slightly better correla-
tion (Pigures 31 and 32) with noise data. Howev r2 a sprgnd
of about 3 db 1s still present. Comparison of VVYd< and K q

WADC TR 55-383, Part I
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relations indicates tha§ these expressions digrgr by a factor
of (velocity)(diameter)</(static temperature)®*°, When typical
values of non-afterburning engines are substitutsd in this ex-
pression, it is found that this factor has a value which 1s
equivalent to slightly less than one decibel. Thus, it con-
tributes very little towards determinations of the total acous-
tic power of turbojet engines._, There is some skepticism among
investigators concerning the K2 relation and this feeling 1s
due strongly to the lack of a technlcal basis for the introduc-
tion of thermal conductivity in Mercer and Dyer's sanalysis.
Applicability of this relation in predicting acoustic prwer

of afterburning engines may be questionable; further investi-
gation is in order.

Test data on higher thrust engines are being gathered so
that a better evaluation of analytical methods for predicting

sound power of jet engines operating at afterburning aend non-
afterburning conditions can be made.
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3. Exhaust Jet Noise - Supercritical Flow

To date, most theoretical and experimental efforts with respect
to jet nolse have been concerned with subsonic or unchoked jet flow,
The nolse problem of Jet nozzles operating at supercritical flow
conditions has received relatively little attention, possibly because
turbine engine exhaust nozzles were operating unchoked for maximum
power, static sea level conditions. But as the speed and altitude
demands of jet-powered aircraft have increased, it has become nec-
essary to ralse the power level of turbojet englnes. As a result,
some current and practically all proposed turbine powerplants at
maximum power, static and take-off conditions will be operating with
supercritical pressure ratios across the exhaust nozzle. The very
little information on jet noise that does exist for choked flow
serves to indicate that the mechanisms of nolse generation for this
operating conditlon are not wholly understood.

The bulk of the available experimental data has been obtained
with cold flow model jets; the tests indicate that convergent
nozzles operating at pressure ratios above the choking condition
exhibit a sudden change in frequency spectrum, at particular pressure
ratios, which has a characteristic intense, discrete frequency
component., This condition is known as ™screech." The magnitude of
this phenomenon reaches a maximum at a particular pressure ratlo
after which it decreases with increasing pressure ratio, For example,
with a 1™ diameter jet, screech reached a maximum intensity at a
pressure ratio of 3.67 and disappeared at a pressure ratio of 5,
(Figure 33) Schlieren observation of model jets show that flow dis-
turbances caused by partly formed torroidal vortices and oscillat-
ing shock waves produce screech., Data indicate that the frequency
of screech is related to shock spacing and 1s inversely proportional
to the nozzle diameter for a given pressure ratio, (24). Figure

3l shows the screech frequency at varlous total pressure ratios for
both orifice and nozzle jets.

During screech, axial pressure fluctuations occur along the
jet. Figure 35 shows such a pressure survey for a sharp-edge
orifice taken approximately 0.1l diameters from the Jjet boundary.

A British investigator (22) states that screech frequency for con-

vergent nozzle jets (cold flow jets) can be expressed approximately
by:

r=1/3 () (R-Rc)'1/2 (for two-dimensional jet)
D
f=1/5 (¢) (R-Rc)‘l/2 (for axially symmetric jet)
D
where [ screech frequency, cps

¢ = sonlc velocity
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Thus, noise from a choked convergent jet is believed to be
generated by the turbulent mixing of the jet with the atmos-
phere as well as by the formation of torroidal vortices and
oscillating shock waves. Elimination of the torroidal vortices
has been found to reduce substantially the acoustical energy
generated. One method or device which has been tried success-
fully on scale model jets (2l) involves injection of an air
stream by a series of auxiliary orifices into the main jet
stream. Figure 36 indicatss the noise reduction obtained by
this method. A British investigator (28) has found that very
small notches on the edge of choked model jets (convergent
type) produce a noticeable reduction in noise level. See
Figure 37.) This investigator also conducted model tests in

which a wire screen placed at the nozzle exit gave evidences
of some nolse reduction.

Test data (Figure 38) on a convergent-divergent nozzle
designed for M = 1.36, i.e., for a pressure ratio of 3.1,
indicated that the acoustlic power radiated from the jet at
the design pressure ratio obeyed Lighthill's eight power velo-
city law and devliated from 1t between pressure ratios of two
to three. This indicates that Lighthill's theory for turbulent
mixing noise generation may hold for both subsonic and super-
sonic velocities as long as the flow 1s shock free. Therefore,
for high nozzle pressure ratios, a properly designed convergent-
divergent nozzle provides not only greater thrust, but can be

quieter than a sonic (convergent) nozzle operating at the same
pressure ratio.

Analysils of rocket jet noise shows that the noise fileld
1s directional and that the angular distribution of sound
energy bears a marked similarity to subsonic jet noise generation.
The maximum sound pressure appears to occur at about the same
angles of 30° to 45° from the jet axis. The noise has a random
amplitude with most of the sound energy located in the low
frequency range of 20 cps to 1500 cps. The frequency spectrum
has a curve similar to a subsonic jet peaking over a wide
range. Thils peak is found to vary with azimuth angle in a
manner similar to that for subsonic noise, i1.e., the high
frequency bands are concentrated at higher angles to the jet
axis than the lower frequency bands. %See Figure 39.)
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4. Jet Noilse Suppression Devices

From the standpoint of personnel safety and comfort,
noise developed by the exhaust jet of contemporary turbine
engines has been found to be intolerable. As a result, num-
erous methods of suppressing jet noise have been studied both
in this country and abroad. The following discussion reviews
these efforts directed towards noise control.

The understanding of aerodynamic jet noise phenomena has
permitted investigators to consider devices which reduce noilse
levels at the source and are a part of the engine Instzllation.
Current turbo jet engine noise levels must be reduced on the
order of 30 decibels (SPL) in order to provide suitable working
conditions for personnel. Besides providing the necessary
noise reduction, these devices should not affect basic engine

performance.

From the nature of Jet nolse generation, the investi-
gators congluded that the over-all noise level could probably
be reduced by changing the turbulent mixing region through a
reduction in jet velocity, and a change in jet velocity dis-
tribution and/or an increase in the spreading characteristics
of the jet. Many devices for accomplishing this have been
tested - most of them with 1little success.

a. NACA has conducted a program to investigate the
effects of varying jet exit cross-sectional shapes on jet
noise characteristics. Square, rectangular, elliptical, and
truncated nozzles wera tested; no appreciable reductions in
noise were evident (29).

b. Two methods, water injection into the main jet stream
as well as alr injection, were 1nvestigated in reference 21
with the bellef that absorption and shear gradient softening
would result in some noise attenuation, but the results were
unsatisfactory.

c. During experiments on model jets, it was found that
as the nozzle diameter was reduced, the frequency spectrum
shifted upward for a given jet velocity - thus placing the
ma jor portion of jet noise above the audible range (lg, 30).
Based upon these observations, Tyler and Towles investigated
several perforated nozzle model configurations. One of these
configurations was later tried on a full-scale engine and
consisted essentially of a perforated tube closed at one end
by a perforated cone. The total effective area of these per-
foratlions was made equivalent to the effective nozzle throat
area of the basic engine. Results of their full-scale tests
indicated a substantial reduction in the audible portion of
the noise spectrum; engine performance, however, was adversely
affected. Such a device in its present stage of development
could find use in ground run-up operation.
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d. Lassiter and Hubbard (24) found that a wire screen
placed downstream of an unchoked model Jet gave significant
reductions in Jjet noise levels. A full-scale turbojet engine
was then tested with a wire screen located at various positions
downstream of the jet exit. The results indicated that reduc-
tions in the acoustical sound power level of as much as 7.5 db
were possible and were probably the result of reduced jet velo-
city downstream of the screen. However, these reductlions were
also accompanied by a thrust loss of as much as 60 percent (31).
Downstream of the screen, the sound pressure level was reduced
about 12 db, while upstream of the screen the SPL was increased
about 7 db. The net result was that the sound fleld was no
longer directional (see Figure L40). It was also found that the
position of the screen was not only critical in producing nolse
reduction but influenced structural damage of the screen due to
formation of resonant frequencies. For screens of 1" to 4" mesh,
the best locatlion was found to be close to the tailpipe, approxi-
mately 6 to 15 inches downstream of it. It appears that this
noise suppression scheme may find use 1n ground run-up operation
of Jet planes.

e. Ejector nozzles have also been iInvestigated with the
thought that the shear gradient across the jet would be softened
by the mixing processes and thus would cause some noise reduc-
tion in comparison with the basic jet nozzle. Several investi-
gators claim that this device offers no reduction in jet noise
levels, but no data has been published to date whlich show the
results of these investigations.

f. A coaxial jet, i.e., a hot jet surrounded by a cooler
stream, has been studled by several workers in the field of
Jet noise; conflicting data appears to exist based upon the
results of their work. In reference 21, it 1s stated that the
test results 1ndicated that the cold outer airstream does not
show an appreciable effect on the noise level of the hot jet
and that the position of the inner nozzle exit, whether it is
in the plane of or upstream of the outer nozzle exit, has no
effect on the noise level of the hot jet. However, British
data (6) indicates that if mixing is almost complete, a reduc-
tion in noise results. It 1s stated in this reference that
calculations and actual test data on a by-pass engine showed
an appreciable reduction 1n sound power compared to a turbojet
engine having approximately the same thrust rating. It was shown
that this is due principally to the lower effective jet velocity
which results from the two streams mixing in the by-pass engilne.
The by-pass engine tested was a Conway engine which has low
pressure alr by-passing the combustion chamber and turbine and
mixing with the hot combustion gases in the jet pipe. Test data
taken at 50-foot radius indicated a noise reduction of about 8
to 10 db (SPL) over that of a turbojet of equivalent thrust
rating (6). Predicted values of probable noise reductions ob-
tainable with by-pass engines in comparison with turbo jet engines
are 1llustrated by Figure 41 (29). Note that a turbojet of
comparable thrust corresponds to a mass flow ratio of zero.
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g. Another device, which has been studled bz NACA and
British investigators, was a tooth-type nozzle. Teeth" or
bars inserted in the jet exhaust at several angles caused the
Jet to spread quickly at a large angle to jet axis. This
method achieves a noise reduction by causing the jet to mix
more quickly as well as by reducing rate of shear. A full-
scale turbojet engine fitted with Mteeth™ was first tested
by the British and the results indicated that this device
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provided a reduction in sound pressure level (). However, .
further investigation by NACA (8) revealed that this reduction
only resulted near the 30° azimuth and that the sound pressure
levels at the azimuths greater than 60° were increased (see Fig-
ure [j2k This rearrangement of the sound pressure in the field
was found to give the same total radlated acoustic power as

the original configuration. In addition to providing 1little
nolse reduction, s thrust loss was also evidenced.

h. Results of tests run on the toothed nozzle indicated
that rapid mixing as near the jet exit as possible could pro-
vide a reduction 1n noise generation without affecting the
engine performance. This led to the investigation and later
the development of the corrugated type nozzle by Rolls Royce,
Ltd. for noise reduction (6). It was found in model and full-
scale tests that thlis device produced a noticeable noise
reduction over that of an equivalent conical jet nozzle of
approximately L d4b (PWL). This decrease is achieved by reduction
of sound intensities in the frequency range of 150 to 2,00 cps,
the range 1n which jet engine nolse 1is centered.

The series of corrugated nozzles investigated varled in
depth and number of corrugations.  Test results showed that
reducing the number of corrugations reduced the. frequency at
which most of che extreme noise intensities prevailled. (See
Figures 43 and Lli.) It was found that six corrugations resulted
in a substantial noise reduction in the frequency range between
150 to 2400 cps. It wag also found that increasing the half
cone angle (angle of convergence of the inner wall of the noz-
zle) beyond 12° resulted in a noise reduction; but as the
angle was increased beyond 12°, thrust losses were incurred.

Pigure L5 shows the nolse. contours obtained from full-
scale engine tests using a corrugated nozzle. It can be noted
that the corrugated nozgle produces attenuation in the higher
frequencies and that the sound pressure level contours for each
octave frequency band are similar to those of the standard
nozzle (Figure 20). TQe noise field from the corrugated noz-
zle contalns no area which has more intense nolse than the fleld
for the standard nozzle, even though the spectrum from the cor-
rugated nozzle consisty of high frequency nolse. It 1s seen
also from the.total noise contours that the maximum SPL occurs
at an angle of LO° raﬁﬁer than 30°. This appears reasonsable
singe it 1s obaerved that the noise spectrum consists primarily
of high frequency sound. Sound pressure level reductions of
abopnt 8 to 10 db have been shown to be possible with this
device. Such a reduction produces about fifty percent reduc-
tign in loudness. (Fjgures 3 and L) The power levels of sev-
ergl conical nozzles pre compared in Figure 46 with that of a
coprugated nozzle installed on a full-scale turbojet engine to
11lustrate the resultant noise reduction.
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IV, CONCLUDING REMARKS

A review and evaluation of technical efforts to date in
the field of aerodynamic nolise generation and control has been
made to help in understanding the mechanisms of turbine engine
ggi:e. The information obtained 1in this survey has indicated i

at:

l., Jet engine noise generation is primarily a result of !
turbulent mixing of the exhaust jet with the surrounding atmos-
phere. The exhaust Jet velocity is the major parameter in this gen-
eration of jet nolse for either choked or unchoked flow conditions.

2. at the present time, the turbine engine inlet, compressor,
combustor, and turbine components are secondary sources of noise,
The noise characteristics and levels of these sources are not
obvious; further investigations are essential.

3. three methods are currently avallable for predicting the
sound power levels of subsonic jets: Lighthlll - V8d2, Tyler and
Perry - specific thrust, and Mercer and Dyer =- K2. Satisfactory
correlation of these methods has been obtained with full-scal
jet engine sound measurements.

4o at supercritical pressure ratios, a phenomena known as
screech can be encountered. The limited data indicate that screech
is caused by torroidal vortices and shock wave oscillations at
particular pressure ratios} frequency of screech is a function of
shock spacing, pressure ratio, and nozzle diameter.

5. at supercritical pressure ratio, a convergent nozzle
generates more noise than a convergent-divergent nozzle at its s
design pressure ratio. y

6. 1little noise data exlsts for convergent-divergent ex-
haust nozzles. Proposed jet engines will probably operate above
choked conditions at maximum, sea level, statlic power settings;
noise characteristics of convergent-divergent nozzles require
further study. “

7. the laws governing the generation of noise in the near ‘
field for choked or unchokdd jets have not been definitely estab-
lished; this region requires more intense investigation since
grouridi-crew personnel are exposed to the nolse levels of this region.

8. the corrugated type nozzle shows the most promise in the
field of subsonic jet noise suppression devices. Nolse levels of
full-scale engines have beén reduced 8 to 10 db. This type of L
exhaust nozzle could be considered for flight installations.

9. research efforts should be intensified to insure the [
development of satisfactory jet noise suppressors which can be Vo
integrated with the engine installation and will not interfere

with routine flight and grdund operations of Jet-powered aircraft.
To date, most research effdrts in this fileld have led to the
development of suppression devices which are only feasible for
ground run-up operations.

10. little data is avallable for suppression devices for
full-scale engines operating above choked flow conditions.

11, the comparative merits of the by-pass engine as regards ‘
noise level, require further investigation. |
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APPENDIX A

Sound is an auditory sensation which is experienced by
the ear as a result of a disturbance in the atmosphere. This
disturbance ceuses a pressure variation to propagate {in a
wave motion) through an elastic medium such as air. Air,
which has only one coefficlient of elasticity, can propagate
only one type of wave, longltudinal waves, in contrast to
solids, which having more than one coefficlent of elasticity
can propagate several weve forms at the same instant. The
pressure fluctuation or wave acts upon the inner ear causing
the sensation of sound to be transmitted to the brain, by
mesns of a remarkable nerve membrane system. The humsn ear
1s quite sensitive to pressure fluctuations, which can range
from the weakest value of {.0002 dynes/cm® to about the largest
safe value of 200 dynes/cm“, At these very low pressures, the
eardrum moves less than 10~ cm, less tHan one-tenth the dia-
meter of a hydrogen atom.
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APPENDIX B

Calculation of Acoustic¢c Power

The noise from a jet is usually defined in terms of its
total radiated power, its distribution of power with frequency,
and 1ts distribution of power in space. The actual calculation
of the total acoustic power is usually based upon the following

assumptions:

a. The nozzle 1s surrounded by a spherical control surface
through which passes all the radiated power. (See Figure L7. )

b. The origin of the spherical surface is located at the
center of the nozzle exit,

c. The ground acts as a perfect reflector.
d. The sound field is symmetric about the jet's axis.

e. The sound pressure level measured in each portioned
area, S. 1s assumed constant.

Nomenclature

Sound power passing through area S = Wg (watts)

Sound pressure level = SPL (db--re: 2 x 10~4 dynes/cm?)
Density of ambient air = @(g/cm3)

Sonic speed for ambient air = c(cm/sec)

Area = S (sq. ft.)

Procedure
(1) w, = 1%%23 x 1014 antilog, , SFL

(2) Total acoustic power = W .=2Ws

(3) PWL = 10 logjq go » db where W, = 10-13 watta.
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APPENDIX C

Annoyance Criteria of Jet Noise

The annoying and interfering features of intense noise
upon conversation is familiar to all of us. It is desirable
in meny instances to be able to predict the degree of this
annoyance. For example, if a new machine is to be purchased,
or if an office 18 to be relocated, or if an airport site 1sa
to be seletted, the extent of annoyance upon personnel must
be predicted or a criterion for acceptable background sound
levels should be established.

A method has been proposed by Beranek (32,33) to deter-
mine the interference of noise upon conversational speech.
It is referred to as the Speech Interference Level and serves
as a criteria which can indicate whether conversation will be
heard in a jet noise field. Based upon a number of sub jective
tests, it hes been found that the three octave bands of 600-
1200, 1200-2400, and 2400-4800 cps are important frequenciles
for making speech comprehensible. The arithmetic average of
the sound pressure levels of these three bands gives the ap-
proximate interfering effect of the noise upon communic¢ation.
This number is known as the speech interference level or SIL.
Table 1 indicates the required levels for communication be-
tween a listener and speaker. In computing the SIL rating,
if the sound pressure level in the 300-600 cps band is found
to be greater than the 600-1200 cps band by 10 db then it
should be averaged with the other three bands to obtaln the
speech interference level.

Another important item of interest is how will jet noise
affect the neighbors. In what way will they react? In order
to determine or predict this response, the concept of "noise
rating letter" is used. This is based upon a statistical
study of previous case histories involving jet nolise complaints.
This data has been related to community response by a curve
known as the Response Curve (Figure ueg. The ordinate of this
curve i1s scaled to show various types of reactions to noise
such as no annoyance, mild annoyance, strong complaints, threats
of legal action, and strong actual legal action, while the
abscissa indicates the corresponding noise field rating and is
designated by a letter. The noise field rating 1s determined
from the noise level rank curve (Figure L49) as follows:

a. Plot the jet noise spectrum upon the noise level
rank curve.

b. Note the highest noise level rank zone into which
the spectrum intrudes.

¢. Correct this level rank number for the spectrum
characteristics by upgrading or downgrading the noise level

- rank by the amount indicated in Table 2. This corrected

letter is the noise rating value for the particular jet noise
field.
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Table.1l.

Speech Interferencg Level Criteria

Enter Figure [j8 of the Response Curve and find the
probable response which the noise field will create.

SIL

Volce Level

Nature of Possible
Communication

45

Normal voice at 10 ft.

Relaxed conversation
(private offices)

55

Normal voice at 3 ft.
Raised volce at 6 rt,
Very loud voice at 12 ft.

Continous communication
in working area (business,
secretarial, control
rooms of test cells)

65

Raised volce at 2 ft.
Very loud voice at 4 ft.
Shouting at 8 ft.

Intermittent communication

75

Very loud volce at 1 ft.
Shouting at 2 to 3 ft.
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Response

Vigorous
legal action =
5//——"

Threats of _ ' P
lsegal action . <
Strong N d
complaints / A Range
Mild e4§9 ///, of expected
complaints response from
Mild ///:Og? : normal population
annoyance <

v 2
No % 7
annoyance A 3 c D E F G H I

Noise Response Curve - Figure |8

Noise Rating

Influencing Factor

Spectrum character
Peak factor
Repetlitive character

(20-to 30-sec exposures
assumed)

Background noise

Time of day

Adjustment to exposure

Background Nolse

TABLE 2., List of Correction Numbers to Be Applied to Level Rank to
Give Noise Rating

Correction

Possible Conditions No.
Continuous 0
Pure-tone components +1
Continuous 0
Impulsive +1
One exposure per min (or con-
tinuous)
10-60 exposures per hr -1
1-10 exposures per hr -2
[}-20 exposures per day -3
1-4 exposures per day =l

1 exposure per day -5
Very qulet suburban +1
Suburban . 0
Residential urban -1
Urban near some industry -2 -
Area of heavy industry -3
Daytime only -1
Nighttime 0
No previous exposure 0

Considerable previous exposure -1
Extreme conditions of esxposure -2
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